Abstract

The fetal programming hypothesis states that fetal undernutrition during pregnancy results in permanent changes in the offspring’s metabolism. A large number of animal studies have evaluated the effect of prenatal undernutrition on later glucose metabolism. Aim: We systematically reviewed the existing animal literature examining effects of prenatal undernutrition on glucose and insulin metabolism. Methods: An electronic search was performed in Medline and Embase to identify all articles that reported studies investigating the effect of prenatal undernutrition on plasma insulin, plasma glucose and beta cell mass in animal models. Summary estimates of the effect of prenatal undernutrition on mean glucose concentration, insulin level, and beta cell mass were obtained through meta-analysis. Results: The search resulted in 1827 articles, of which 117 were potentially eligible, based on title and abstract, and 49 met the selection criteria and were included in the review. Prenatal protein restriction (but not general undernutrition) increased plasma glucose concentrations (0.42 mmol/l (95% CI 0.07 to 0.77)). Both prenatal general undernutrition and protein restriction reduced plasma insulin concentrations (general undernutrition: -0.03 nmol/l (95% CI -0.04 to -0.01), protein restricted: -0.04 nmol/l (95% CI -0.08 to 0.00)) and beta cell mass (general undernutrition: -1.24 mg (95% CI -1.88 to -0.60), protein restriction: -0.99 mg (95% CI -1.67 to -0.31)). In all cases, heterogeneity was significant. Conclusions: Despite significant heterogeneity, evidence from experiments in different species suggests that prenatal undernutrition – both general or protein restriction – results in increased glucose and reduced insulin concentrations as well as beta cell mass in later life.

Highlights

  • In the early 1990s, a cohort study of 64-year-old men in Hertfordshire revealed an inverse association between birth weight and glucose concentrations and insulin resistance [1]

  • Subjects with the lowest birth weights were 6 times more likely to develop type 2 diabetes or impaired glucose tolerance than those with highest birth weights. These findings led to the ‘fetal origins hypothesis’, stating that fetal adaptations to reduced nutrient supply predispose to impaired glucose tolerance and type 2 diabetes in adult life [2]

  • Many studies in various populations across the world have investigated the association between birth weight and later risk of type 2 diabetes [3]

Read more

Summary

Introduction

In the early 1990s, a cohort study of 64-year-old men in Hertfordshire revealed an inverse association between birth weight and glucose concentrations and insulin resistance [1]. Subjects with the lowest birth weights were 6 times more likely to develop type 2 diabetes or impaired glucose tolerance than those with highest birth weights. The inverse association was shown to be the dominant one in most populations, various studies find a positive association between birth weight and type 2 diabetes risk at the higher end of the birth weight distribution (> 4 kg). This would be biologically plausible given the recognized association between gestational diabetes and macrosomia

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.