Abstract

BackgroundEliminating Rhodesian sleeping sickness, the zoonotic form of Human African Trypanosomiasis, can be achieved only through interventions against the vectors, species of tsetse (Glossina). The use of insecticide-treated cattle is the most cost-effective method of controlling tsetse but its impact might be compromised by the patchy distribution of livestock. A deterministic simulation model was used to analyse the effects of spatial heterogeneities in habitat and baits (insecticide-treated cattle and targets) on the distribution and abundance of tsetse.Methodology/Principal FindingsThe simulated area comprised an operational block extending 32 km from an area of good habitat from which tsetse might invade. Within the operational block, habitat comprised good areas mixed with poor ones where survival probabilities and population densities were lower. In good habitat, the natural daily mortalities of adults averaged 6.14% for males and 3.07% for females; the population grew 8.4× in a year following a 90% reduction in densities of adults and pupae, but expired when the population density of males was reduced to <0.1/km2; daily movement of adults averaged 249 m for males and 367 m for females. Baits were placed throughout the operational area, or patchily to simulate uneven distributions of cattle and targets. Gaps of 2–3 km between baits were inconsequential provided the average imposed mortality per km2 across the entire operational area was maintained. Leaving gaps 5–7 km wide inside an area where baits killed 10% per day delayed effective control by 4–11 years. Corrective measures that put a few baits within the gaps were more effective than deploying extra baits on the edges.Conclusions/SignificanceThe uneven distribution of cattle within settled areas is unlikely to compromise the impact of insecticide-treated cattle on tsetse. However, where areas of >3 km wide are cattle-free then insecticide-treated targets should be deployed to compensate for the lack of cattle.

Highlights

  • Rhodesian sleeping sickness, caused by Trypanosoma brucei rhodesiense, is transmitted by tsetse flies (Glossina spp.) across East and Southern Africa

  • The disease is the zoonotic form of Human African Trypanosomiasis (HAT) in which the trypanosomes are harboured by reservoir hosts, primarily in wild and domestic suids and bovids

  • Eliminating Rhodesian sleeping sickness, the zoonotic form of Human African Trypanosomiasis found in East and Southern Africa, can be achieved only through eliminating the vectors, species of tsetse fly (Glossina)

Read more

Summary

Introduction

Rhodesian sleeping sickness, caused by Trypanosoma brucei rhodesiense, is transmitted by tsetse flies (Glossina spp.) across East and Southern Africa. The disease is the zoonotic form of Human African Trypanosomiasis (HAT) in which the trypanosomes are harboured by reservoir hosts, primarily in wild and domestic suids and bovids. In addition to treating people carrying HAT, interventions must be directed at removing trypanosomes from reservoir hosts and eliminating the vectors [1]. Eliminating Rhodesian sleeping sickness, the zoonotic form of Human African Trypanosomiasis, can be achieved only through interventions against the vectors, species of tsetse (Glossina). The use of insecticide-treated cattle is the most cost-effective method of controlling tsetse but its impact might be compromised by the patchy distribution of livestock. A deterministic simulation model was used to analyse the effects of spatial heterogeneities in habitat and baits (insecticide-treated cattle and targets) on the distribution and abundance of tsetse

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call