Abstract
We study the Gunn-Peterson effect of the photoionized intergalactic medium (IGM) in the redshift range 5 < z < 6.4 using semianalytic simulations based on the lognormal model. Assuming a rapidly evolved and spatially uniform ionizing background, the simulation can produce all the observed abnormal statistical features near redshift z 6. They include (1) a rapid increase of absorption depths, (2) large scatter in the optical depths, (3) long-tailed distributions of transmitted flux, and (4) long dark gaps in spectra. These abnormal features are mainly due to rare events, which correspond to the long-tailed probability distribution of the IGM density field, and therefore they may not imply significant spatial fluctuations in the UV ionizing background at z 6.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.