Abstract

Two recent papers have claimed detection of non-Gaussian features in the COBE DMR sky maps of the cosmic microwave background. We confirm these results, but argue that Gaussianity is still not convincingly ruled out. Since a score of non-Gaussianity tests have now been published, one might expect some mildly significant results even by chance. Moreover, in the case of one measure which yields a detection, a bispectrum statistic, we find that if the non-Gaussian feature is real, it may well be due to detector noise rather than a non-Gaussian sky signal, since a signal-to-noise analysis localizes it to angular scales smaller than the beam. We study its spatial origin in case it is nonetheless due to a sky signal (eg, a cosmic string wake or flat-spectrum foreground contaminant). It appears highly localized in the direction b=39.5, l=257, since removing a mere 5 pixels inside a single COBE beam area centered there makes the effect statistically insignificant. We also test Guassianity with an eigenmode analysis which allows a sky map to be treated as a random number generator. A battery of tests of this generator all yield results consistent with Gaussianity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.