Abstract

There is the long-standing question whether the class of cyclic codes is asymptotically good. By an old result of Lin and Weldon, long Bose-Chaudhuri-Hocquenhem (BCH) codes are asymptotically bad. Berman proved that cyclic codes are asymptotically bad if only finitely many primes are involved in the lengths of the codes. We investigate further classes of cyclic codes which also turn out to be asymptotically bad. Based on reduction arguments we give some evidence that there are asymptotically good sequences of binary cyclic codes in which all lengths are prime numbers provided there is any asymptotically good sequence of binary cyclic codes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.