Abstract
We consider the kinetic theory of dilute gases in the Boltzmann–Grad limit. We propose a new perspective based on a large deviation estimate for the probability of the empirical distribution dynamics. Assuming Boltzmann molecular chaos hypothesis (Stosszahlansatz), we derive a large deviation rate function, or action, that describes the stochastic process for the empirical distribution. The quasipotential for this action is the negative of the entropy when the conservation laws are verified, as should be expected. While the Boltzmann equation appears as the most probable evolution, corresponding to a law of large numbers, the action describes a genuine reversible stochastic process for the empirical distribution, in agreement with the microscopic reversibility. As a consequence, this large deviation perspective gives the expected meaning to the Boltzmann equation and explains its irreversibility as the natural consequence of limiting the physical description to the most probable evolution. More interestingly, it also quantifies the probability of any dynamical evolution departing from solutions of the Boltzmann equation. This picture is fully compatible with the heuristic classical view of irreversibility, but makes it much more precise in various ways. We also explain that this large deviation action provides a natural gradient structure for the Boltzmann equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.