Abstract

Biodegradation is a major determinant of chemical persistence in the environment and an important consideration for PBT and environmental risk assessments. It is influenced by several environmental factors including temperature and microbial community structure. According to REACH guidance, a temperature correction based on the Arrhenius equation is recommended for chemical persistence data not performed at the recommended EU mean surface water temperature. Such corrections, however, can lead to overly conservative P/vP assessments. In this paper, the relevance of this temperature correction is assessed for petroleum hydrocarbons, using measured surface water (marine and freshwater) degradation half-time (DT50) and degradation half-life (HL) data compiled from relevant literature. Stringent screening criteria were used to specifically select data from biodegradation tests containing indigenous microbes and conducted at temperatures close to their ambient sampling temperature. As a result, ten independent studies were identified, with 993 data points covering 326 hydrocarbon constituents. These data were derived from tests conducted with natural seawater, or freshwater, at temperatures ranging from 5 to 21 °C. Regressions were performed on the full hydrocarbon dataset and on several individual hydrocarbons. The results were compared to the trend as predicted by the Arrhenius equation and using the activation energy (Ea) as recommend in the REACH Guidance. The comparison shows that the correction recommended in REACH Guidance over predicts the effect of temperature on hydrocarbon biodegradation. These results contrast with temperature manipulated inocula where the test temperature is different from the ambient sampling temperature. In these manipulated systems, the effect of temperature follows the Arrhenius equation more closely. In addition, a more striking effect of temperature on the lag phase was observed with longer lag phases more apparent at lower temperatures. This indicates that the effect of temperature may indeed be even lower when considering hydrocarbon biodegradation without the initial lag phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.