Abstract
Recent work has shown that higher-order terms in population dynamics models can increase the stability, promote the diversity, and better explain the dynamics of ecological systems. While it is known that these perceived benefits come from an increasing number of alternative solutions given by the nature of multivariate polynomials, this mathematical advantage has not been formally quantified. Here, we develop a general method to quantify the mathematical advantage of adding higher-order interactions in ecological models based on the number of free-equilibrium points that can emerge in a system (i.e., equilibria that can be feasible or unfeasible as a function of model parameters). We apply this method to calculate the number of free-equilibrium points in Lotka–Volterra dynamics. While it is known that Lotka–Volterra models without higher-order interactions only have one free-equilibrium point regardless of the number of parameters, we find that by adding higher-order terms this number increases exponentially with the dimension of the system. Hence, the number of free-equilibrium points can be used to compare more fairly between ecological models. Our results suggest that while adding higher-order interactions in ecological models may be good for prediction purposes, they cannot provide additional explanatory power of ecological dynamics if model parameters are not ecologically restricted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.