Abstract

Despite the availability of a safe and efficacious yellow fever vaccine since 1937, yellow fever remains a public health threat as a re-emerging disease in Africa and South America. We reviewed the trend of reported yellow fever outbreaks in eastern African countries, identified the risk epidemiological factors associated with the outbreaks and assessed the current situation of Yellow Fever vaccination in Africa. Surveillance and case finding for yellow fever in Africa are insufficient primarily due to lack of appropriate diagnostic capabilities, poor health infrastructure resulting in under-recognition, underreporting and underestimation of the disease. Despite these challenges, Ethiopia reported 302,614 cases (30,505 deaths) in 1943–2015, Kenya had 207 cases (38 deaths) in 1992–2016, Sudan experienced 31,750 suspected cases (1855 deaths) from 1940 to 2012 and Uganda had 452 cases (65 deaths) in 1941–2016. Major risk factors associated with past yellow fever outbreaks include climate, human practices and virus genetics. Comparisons between isolates from different outbreaks after 45 years have revealed the genetic stability of the structural proteins of YFV which are the primary targets of the host immune cells. This probably explains why yellow fever 17D vaccine is considered as outstandingly efficacious and safe after being used for 75 years. However, the 14 amino-acid changes among these isolates may have a greater impact on the changing disease epidemiology, virulence and transmission rate. Low population immunity against YF influences outbreak frequency especially in countries where the incorporation of YF vaccination is not combined with mass vaccination campaigns or vaccination is limited to international travellers. Understanding Yellow fever virus epidemiology as determined by its evolution underscores appropriate disease mitigation strategies and immunization policies. Mobilizing scarce resources to enhance population immunity through sufficient vaccination, promoting environmental sanitation/hygienic practices, driving behavioral change and community-based vector control are significant to preventing future epidemics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call