Abstract

In this research, an attempt was made to produce multi-component nanocrystalline Cu­35Co35Ni20Ti5Al5 alloy by mechanical alloying. To produce this high-entropy alloy, the primary powders were milled for 40 h and characterized by XRD, SEM, EDS, and DSC analyses. The milling process has reduced the size of the crystallites to the nanometer scale and a nanostructured multicomponent powder with a crystallite size of 29 nm was obtained. According to the XRD patterns and EDS maps of the milled powder for the longest time, aluminum and copper were homogeneously distributed, cobalt had a less homogeneous distribution than these two elements, but nickel and titanium remained in concentrated spots. Finally, thermodynamic calculations were done to clarify the reason for the impossibility of forming a solid solution for the synthesis of the Cu­35Co35Ni20Ti5Al5 high-entropy alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.