Abstract

The need to decarbonize and reduce the impact of human activities is opening the window for new bioproducts. The industry of bioplastics has grown exponentially in the past years, and its production is expected to triple by 2026. Different bioplastics are currently produced, but bio-polyethylene constitute an interesting opportunity since its fossil counterpart is one of the most used materials worldwide, and its precursor, ethylene, is one of the highest contributors to GHG emissions in the chemical industry. The true environmental impact of this bio-based plastic remains under controversial discussions due to a wide distribution of environmental indicators values found in the literature for this material. We aim to thoroughly evaluate the environmental impact of bio-polyethylene made from sugarcane across the different production stages through a life cycle analysis. Our goal is also to assess unintended consequences (consequential effects) of producing it. It was determined that land-use change represents the main aspect affecting the environmental sustainability of bio-polyethylene. From an attributional point of view, this bioplastic could present lower carbon footprints than fossil polyethylene if no deforestation occurs. From a consequential standpoint, indirect deforestation as a response to producing more bioplastic could negatively impact the environmental profile of this material. Policies restricting deforestation are required to ensure that bio-polyethylene can constitute an alternative to reduce the carbon footprint of products in both scenarios. We expect this work to provide a robust evaluation to understand the environmental impact of bio-polyethylene, which will help the industry understand the place of this bio-based plastic and increase the offering of more sustainable products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call