Abstract

High species diversity of the potential animal host community for a zoonotic pathogen may reduce pathogen transmission among the most competent host, a phenomenon called the “dilution effect”, but the mechanisms driving this effect have been little studied. One proposed mechanism is “encounter reduction” where host species of low-competency decrease contact rates between infected and susceptible competent hosts, especially in directly transmitted diseases. We conducted an experiment in outdoor enclosures in northwestern Mexico where we manipulated rodent assemblages to assess the effect of species richness on the frequency of intra- and interspecific interactions and activity patterns of a hantavirus reservoir host (North American deermouse; Peromyscus maniculatus). Trials consisted of three treatments of rodent assemblages that differed in species richness, but had equal abundance of deermice; treatment 1 consisted of only deermice, treatment 2 included deermice and one non-competent host species, and treatment 3 included two non-competent host species in addition to deermice. To measure interactions and temporal activity, we strategically deployed foraging stations and infrared cameras. We did not find differences in the frequency of intraspecific interactions of deermice among treatments, but there were significantly more interspecific interactions between deermouse and non-competent hosts in treatment 2 than treatment 3, which is explained by the identity of the non-competent host species. In addition, there were differences in activity patterns between rodent species, and also between deermice from treatment 1 and treatment 2. These results indicate that at least at a small-scale analysis, the co-occurrence with other species in the study area does not influence the frequency of intraspecific interactions of deermice, and that deermice may be changing their activity patterns to avoid a particular non-competent host species (Dipodomys merriami). In conclusion, in this deermouse-hantavirus system a potential dilution effect would not be through intraspecific encounter reduction in the most competent hantavirus host. To identify variables of host assemblages that can influence pathogen transmission, we highlight the need to address the identity of species and the composition of assemblages, not only host species richness or diversity.

Highlights

  • A topic of growing interest in disease ecology is the relationship between biodiversity and infectious disease transmission [1,2]

  • Given an assemblage containing the potential hosts for a given pathogen in a geographic area, the dilution effect is said to occur when increasing host species richness or diversity results in decreasing pathogen prevalence in the primary host species

  • For directly transmitted pathogens, assessing the influence of host species diversity on host interactions is of particular interest as co-occurring hosts of low-competency may influence contact rates between infected and susceptible competent hosts, in turn, increasing or decreasing pathogen transmission

Read more

Summary

Introduction

A topic of growing interest in disease ecology is the relationship between biodiversity and infectious disease transmission [1,2]. Given an assemblage containing the potential hosts for a given pathogen in a geographic area, the dilution effect is said to occur when increasing host species richness (the total number of species) or diversity (a metric that considers both richness and relative abundance of species) results in decreasing pathogen prevalence in the primary host species (i.e. the species that maintains and most readily transmits the pathogen). This has been proposed to occur via several potential mechanisms, including decreased primary host population density, reduced frequency of encounters (encounter reduction) between primary host individuals, or reduced survival of primary hosts [3]. Despite its relevance, empirical studies regarding the influence of host diversity on intra- and interspecific contact rates of hosts are rare (but see Clay et al [5], Dizney and Dearing [6])

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call