Abstract
The question of why the receptive fields of simple cells in the primary visual cortex are Gabor-like is a crucial one in vision research. Many research efforts (Olshausen and Field 1996, 1997; van Hateren and Ruderman 1998; van Hateren and van der Schaaf 1998) that yield a set of localized, oriented, and bandpass Gabor-like receptive fields believe that sparse and distributed is the coding goal of simple cells. This paper investigates a more general coding strategy that measures equally any departure from normality in the simple cells' responses. That is, we investigate the possibility that highly kurtotic response histograms may result if simple cells explicitly seek, not maximally kurtotic, but rather maximally non-Gaussian response histograms to natural images. It is found that, under this coding strategy, the simulations produce a majority of localized, oriented, bandpass (Gabor-like) receptive fields. Some receptive fields, however, are spatially distributed and show little oriented structure. Nearly all receptive fields, regardless of whether they are Gabor-like or non-Gabor-like, yield highly kurtotic response histograms to natural images. Thus, in seeking maximally non-Gaussian response histograms, receptive fields spontaneously yield highly kurtotic histograms. The presence in our ensemble of nonlocalized, nonoriented receptive fields may be due to the artificial requirement that receptive fields be orthonormal. We conclude that the high kurtoses observed in the response histograms of simple-cell receptive fields to natural images may reflect a property of natural images themselves rather than an explicit coding goal used to structure simple-cell receptive fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.