Abstract

This paper examines the relationship between Shafer's belief functions and convex sets of probability distributions. Kyburg's (1986) result showed that belief function models form a subset of the class of closed convex probability distributions. This paper emphasizes the importance of Kyburg's result by looking at simple examples involving Bernoulli trials. Furthermore, it is shown that many convex sets of probability distributions generate the same belief function in the sense that they support the same lower and upper values. This has implications for a decision theoretic extension. Dempster's rule of combination is also compared with Bayes' rule of conditioning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.