Abstract

Matchmaking companies and theoretical perspectives on close relationships suggest that initial attraction is, to some extent, a product of two people’s self-reported traits and preferences. We used machine learning to test how well such measures predict people’s overall tendencies to romantically desire other people (actor variance) and to be desired by other people (partner variance), as well as people’s desire for specific partners above and beyond actor and partner variance (relationship variance). In two speed-dating studies, romantically unattached individuals completed more than 100 self-report measures about traits and preferences that past researchers have identified as being relevant to mate selection. Each participant met each opposite-sex participant attending a speed-dating event for a 4-min speed date. Random forests models predicted 4% to 18% of actor variance and 7% to 27% of partner variance; crucially, however, they were unable to predict relationship variance using any combination of traits and preferences reported before the dates. These results suggest that compatibility elements of human mating are challenging to predict before two people meet.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.