Abstract
The effects of in vivo treatment with graded doses (0.5-1.5 micrograms/g body weight) of thyroid hormones, tri-iodothyronine (T3) and thyroxine (T4), for 4 consecutive days to euthyroid rats on the respiratory activity of isolated brain mitochondria were examined. T4 stimulated coupled State-3 respiration with glutamate, pyruvate + malate, ascorbate + tetramethyl-p-phenylenediamine and succinate, in a dose-dependent manner; T3 was effective only at the highest (1.5 micrograms) dose employed. T4 was more effective than T3 in stimulating respiratory activity. State-4 respiratory rates were in general not influenced except in the case of the ascorbate + tetramethyl-p-phenylenediamine system. Primary dehydrogenase activities, i.e. glutamate dehydrogenase, malate dehydrogenase and succinate dehydrogenase, were stimulated about 2-fold; interestingly mitochondrial but not cytosolic malate dehydrogenase activity was influenced under these conditions. The hormone treatments did not greatly influence the mitochondrial cytochrome content. The results therefore suggest that thyroid hormone treatment not only stimulates primary dehydrogenase activities but may also directly influence the process of mitochondrial electron transfer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.