Abstract

In this work WC-supported metal monolayers (Cu, Ru, Rh, Pd, Ag, Ir, Pt and Au) are investigated using Density Functional Theory in order to establish general trends regarding monolayer stability, electronic structure and reactivity. Using calculated hydrogen–metal bond energies and available data on the exchange current densities (j0) for hydrogen evolution reaction (HER) volcano-type curve is obtained enabling prediction of HER j0 for the entire series of MML/WC systems not considered so far as HER electrocatalysts. Among investigated surfaces, CuML/WC(0001) and RhML/WC(0001) are identified as promising HER electrocatalysts with (i) HER exchange current density matching the one of Pt and (ii) stability in electrochemical environment under HER conditions. Provided results point to a general conclusion that Pt might not be necessary for efficient catalysis of hydrogen electrode reactions – superior catalysts can be obtained by rational design approach with suitable choice of overlayer/support system not involving Pt at all.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call