Abstract

The purpose of this study was to assess whether the self-regulation of training intensity based on rating of perceived exertion (RPE) is a reliable method to control the intensity during metabolic conditioning sessions of functional fitness. In addition, the relationship between RPE and the changes in heart rate, number of repetitions, and lactate responses was also analyzed. Eight male participants (age 28.1 ± 5.4 years; body mass 77.2 ± 4.4 kg; VO2 max: 52.6 ± 4.6 mL·(kg·min)−1 completed two sessions (five to seven days apart), in a randomized order, under different conditions, as follows: (1) all-out (ALL), or (2) self-regulation of intensity based on an RPE of six (hard) on the Borg CR-10 scale (RPE6). The rating of perceived exertion, lactate (LAC), and heart rate (HR) response were measured before, during, and immediately after the sessions. The RPE and LAC during the all-out sessions were higher (p < 0.0005) than the RPE6 session for all of the analyzed time points during the session. There was no difference in the HR area under the curve for the all-out and RPE6 sessions. The average number of repetitions performed was lower (p ≤ 0.009) for the RPE6 session (190.5 ± 12.5 repetitions) when compared to the all-out session (214.4 ± 18.6 repetitions). There was a significant correlation between the RPE and LAC (p = 0.005; r = 0.66; large) and number of repetitions during the session (p = 0.026; r = 0.55; large). No correlation was observed between the RPE and HR (p = 0.147; r = 0.380). These results indicate that the self-regulation of intensity of effort based on the RPE may be a useful tool to control the exercise intensity during a metabolic conditioning session of functional fitness.

Highlights

  • Functional-fitness training (FFT), known as CrossFit, high-intensity functional training (HIFT), or extreme conditioning programs (ECP), is an exercise modality that contemplates a variety of training methods

  • While not all sessions are performed in an all-out manner, this type of effort is common in FFT, as the sessions are frequently performed as rounds for time (RFT) or as many rounds as possible (AMRAP), encouraging participants to complete the highest amount of work possible in a set period of time [3,5]

  • The results presented in this study support the hypothesis that rate of perceived exertion (RPE) could be used to regulate the intensity of metabolic conditioning sessions in trained men

Read more

Summary

Introduction

Functional-fitness training (FFT), known as CrossFit, high-intensity functional training (HIFT), or extreme conditioning programs (ECP), is an exercise modality that contemplates a variety of training methods. Sessions are often classified as weightlifting (W), metabolic (M), or gymnastics (G), and utilize weightlifting/powerlifting exercises FFT programs are usually planned so that a combination of each type of session is performed on a weekly basis, simultaneously enhancing multiple fitness components, such as aerobic power and anaerobic capacity, muscular endurance, strength, and power [2]. The metabolic training sessions are often performed either as a single mode of exercise focusing on a cardiovascular exercise, or utilizing a combination of exercise methods in order to maximize physiological stress and the purported training adaptations [4]. While not all sessions are performed in an all-out manner, this type of effort is common in FFT (from the most famous FFT program), as the sessions are frequently performed as rounds for time (RFT) or as many rounds as possible (AMRAP), encouraging participants to complete the highest amount of work possible in a set period of time [3,5]

Objectives
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call