Abstract
Modern food web studies are typically conducted from a trophic dynamic perspective that focuses on combined roles of top-down and bottom-up forces in regulating food web structure. Recognition of spatial food web subsidies in diverse ecosystems highlights the importance of energy flow as a foundation for understanding trophic dynamics. Here, we consider how different energy flow configurations might affect trophic dynamics in north-temperate lakes. A literature review revealed that littoral piscivores exert top-down control on prey fishes. In contrast, analysis of littoral predator diets indicated extensive omnivory and heavy reliance on zoobenthic prey. We explored this uncoupling between trophic dynamics (piscivores regulate prey fish) and energy flow (zoobenthos in piscivore diets) using a biomass dynamic model. This model compared top-down impacts of a piscivore on prey fishes under two scenarios: consumption of prey fish only and consumption of prey fish plus zoobenthos. The model predicted that elimination of zoobenthivory leads to a 50% reduction in piscivore standing stock and concomitant 2.5-fold increase in prey fish abundance (i.e., zoobenthivory plays a key role in mediating pelagic top-down control). These results highlight the role of benthicpelagic linkages in regulating trophic dynamics and underscore the value of whole-ecosystem approaches to the study of food webs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Canadian Journal of Fisheries and Aquatic Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.