Abstract

The assessment of pressure pain threshold (PPT) provides a quantitative value related to the mechanical sensitivity to pain of deep structures. Although excellent reliability of PPT has been reported in numerous anatomical locations, its absolute and relative reliability in the lower back region remains to be determined. Because of the high prevalence of low back pain in the general population and because low back pain is one of the leading causes of disability in industrialized countries, assessing pressure pain thresholds over the low back is particularly of interest. The purpose of this study study was (1) to evaluate the intra- and inter- absolute and relative reliability of PPT within 14 locations covering the low back region of asymptomatic individuals and (2) to determine the number of trial required to ensure reliable PPT measurements. Fifteen asymptomatic subjects were included in this study. PPTs were assessed among 14 anatomical locations in the low back region over two sessions separated by one hour interval. For the two sessions, three PPT assessments were performed on each location. Reliability was assessed computing intraclass correlation coefficients (ICC), standard error of measurement (SEM) and minimum detectable change (MDC) for all possible combinations between trials and sessions. Bland-Altman plots were also generated to assess potential bias in the dataset. Relative reliability for both intra- and inter- session was almost perfect with ICC ranged from 0.85 to 0.99. With respect to the intra-session, no statistical difference was reported for ICCs and SEM regardless of the conducted comparisons between trials. Conversely, for inter-session, ICCs and SEM values were significantly larger when two consecutive PPT measurements were used for data analysis. No significant difference was observed for the comparison between two consecutive measurements and three measurements. Excellent relative and absolute reliabilities were reported for both intra- and inter-session. Reliable measurements can be equally achieved when using the mean of two or three consecutive PPT measurements, as usually proposed in the literature, or with only the first one. Although reliability was almost perfect regardless of the conducted comparison between PPT assessments, our results suggest using two consecutive measurements to obtain higher short term absolute reliability.

Highlights

  • Pain is defined as an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or describe in terms of such damage [1]

  • Pressure algometry (PA) performed with a handheld algometer is a method increasingly used since the 80s to assess mechanical pain sensitivity in different anatomical regions

  • We have reported almost perfect intra- and inter-session reliability on the first pressure pain thresholds (PPT) measurement (ICC ranged from 0.85 to 0.99) suggesting that one training trial over the tibialis anterior would be sufficient to familiarize the participant with the PPT procedure

Read more

Summary

Introduction

Pain is defined as an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or describe in terms of such damage [1]. Pressure algometry (PA) performed with a handheld algometer is a method increasingly used since the 80s to assess mechanical pain sensitivity in different anatomical regions. When it is applied perpendicularly to the skin, the algometer creates a mechanical painful stimulation by activating group III and group IV muscle nociceptors [3]. Through pressure pain thresholds (PPT), PA provides a quantitative value related to deep structures sensitivity allowing clinicians or researchers to make comparison over time. In case of musculoskeletal pain, as recently proposed in a literature review by Arendt-Nielsen and Yarnitsky [4], PA seems relevant to compare pain over time or between various normal, affected or treated anatomical regions

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call