Abstract

The group $\text{PL}_{+}(I)$ of increasing piecewise-linear self-homeomorphisms of the interval $I=[0,1]$ may not be assigned a topology in such a way that it becomes a Polish group. The same statement holds for the groups $\text{Homeo}_{+}^{\text{Lip}}(I)$ of bi-Lipschitz homeomorphisms of $I$, and $\text{Diff}_{+}^{1+\unicode[STIX]{x1D716}}(I)$ of diffeomorphisms of $I$ whose derivatives are Hölder continuous with exponent $\unicode[STIX]{x1D716}$, as well as the corresponding groups acting on the real line and on the circle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.