Abstract

Bell's theorem has been widely argued to show that some of the predictions of quantum mechanics which are obtained by applying the {\it Born's rule} to a class of {\it entangled states}, are {\it not} compatible with {\it any} local-causal statistical model, via the violation of Bell's inequalities. On the other hand, in the previous work, we have shown that quantum dynamics and kinematics are {\it emergent} from a statistical model that is singled out {\it uniquely} by the principle of Locality. Here we shall show that the local-causal model supports entangled states and give the statistical origin of their generation. We then study the Stern-Gerlach experiment to show that the Born's rule can also be derived as a mathematical theorem in the local-causal model. These results lead us to argue that nonlocality is {\it not} responsible for the quantum mechanical and most importantly experimental violation of Bell's inequalities. The source(s) of violation has to be sought somewhere else.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.