Abstract

Conservation decisions based on neutral genetic diversity have been observed to promote retention of useful quantitative variation in biological populations. An experiment was undertaken to determine the association between microsatellite marker polymorphisms and phenotypic variation in semen production and cryosurvival traits in bulls. Thirty-five ejaculates were collected from ten bulls of two breeds and evaluated before and after cryopreservation for several semen traits. The bulls were also genotyped using a set of sixteen bovine-specific microsatellite marker loci. Fixation indices (FST ), heterozygosity and Nei's genetic distance measures were computed from allele frequency data for each of the bulls. Molecular and phenotypic data were used to compute tri-distance matrices for the ten bulls and correlated using Mantel's test in GenAIEx 6.5. The study revealed extensive heterogeneity in semen traits, heterozygosity and FST values among the bulls. Large pairwise phenotypic and genetic distances were also observed. Correlation between pairwise genetic distances and phenotypic distances was significant and highly positive for sperm viability (r=.61, p<.001) and moderately positive for sperm motility (r=.40-42, p<.05) variables. For sperm morphology, ejaculate volume and sperm concentration, correlation with genetic distances was positive, low and not significantly different from zero (p>.05). A tendency for a triangular-shaped relationship between genetic and phenotypic distances for post-thaw motility and viability traits was also observed. Accordingly, association with neutral genetic diversity was absent for semen production traits and moderate to highly positive for sperm cryosurvival traits. Given these findings, conservation decisions based on neutral genetic diversity may capture variation in some adaptive traits, but not others.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call