Abstract
Feature selection is an important preprocessing step for many high-dimensional regression problems. One of the most common strategies is to select a relevant feature subset based on the mutual information criterion. However, no connection has been established yet between the use of mutual information and a regression error criterion in the machine learning literature. This is obviously an important lack, since minimising such a criterion is eventually the objective one is interested in. This paper demonstrates that under some reasonable assumptions, features selected with the mutual information criterion are the ones minimising the mean squared error and the mean absolute error. On the contrary, it is also shown that the mutual information criterion can fail in selecting optimal features in some situations that we characterise. The theoretical developments presented in this work are expected to lead in practice to a critical and efficient use of the mutual information for feature selection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.