Abstract

IP traffic has been growing every year, bringing the need for deploying an IP backbone interconnected by links provided by the transport network. Thus, network operators have had traditionally divided their core network in two, the IP network and the transport network. Network planning and engineering tasks have been performed independently in both domains. Traditionally, the transport network has been quite inflexible, and changes have often required a long time to occur. However, recent developments in the control plane allow flexibility in the transport network, making it possible to set up and tear down circuits on demand. In this light, multilayer traffic engineering has been proposed to jointly manage both IP and transport layers, with the aim of optimizing the use of resources. This paper aims to describe the rationale behind multilayer traffic engineering, demonstrate its feasibility and quantify its advantages in terms of cost effectiveness. Also, this work takes a look at the different choices in performing the multilayer operation, in terms of control plane implementation and equipment integration. Finally, the paper presents a report on multilayer traffic engineer experimentation which proves its feasibility and show a preliminary techno-economic case study of the multilayer operation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call