Abstract
Mutations arise during DNA replication due to oxidative lesions and intrinsic polymerase errors. Mitochondrial DNA (mtDNA) mutation rate is therefore closely linked to the mitochondrial DNA turnover process, especially in post mitotic cells. This makes the mitochondrial DNA turnover rate critical for understanding the origin and dynamics of mtDNA mutagenesis in post mitotic cells. Experimental mitochondrial turnover quantification has been based on different mitochondrial macromolecules, such as mitochondrial proteins, lipids and DNA, and the experimental data suggested highly divergent turnover rates, ranging from over 2days to about 1year. In this article we argue that mtDNA turnover rate cannot be as fast as is often envisaged. Using a stochastic model based on the chemical master equation, we show that a turnover rate corresponding to mtDNA half-life in the order of months is the most consistent with published mtDNA mutation levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.