Abstract

BackgroundWasting is a major public health issue throughout the developing world. Out of the 6.9 million estimated deaths among children under five annually, over 800,000 deaths (11.6 %) are attributed to wasting. Wasting is quantified as low Weight-For-Height (WFH) and/or low Mid-Upper Arm Circumference (MUAC) (since 2005). Many statistical procedures are based on the assumption that the data used are normally distributed. Analyses have been conducted on the distribution of WFH but there are no equivalent studies on the distribution of MUAC.MethodsThis secondary data analysis assesses the normality of the MUAC distributions of 852 nutrition cross-sectional survey datasets of children from 6 to 59 months old and examines different approaches to normalise “non-normal” distributions.ResultsThe distribution of MUAC showed no departure from a normal distribution in 319 (37.7 %) distributions using the Shapiro–Wilk test. Out of the 533 surveys showing departure from a normal distribution, 183 (34.3 %) were skewed (D’Agostino test) and 196 (36.8 %) had a kurtosis different to the one observed in the normal distribution (Anscombe–Glynn test). Testing for normality can be sensitive to data quality, design effect and sample size. Out of the 533 surveys showing departure from a normal distribution, 294 (55.2 %) showed high digit preference, 164 (30.8 %) had a large design effect, and 204 (38.3 %) a large sample size. Spline and LOESS smoothing techniques were explored and both techniques work well. After Spline smoothing, 56.7 % of the MUAC distributions showing departure from normality were “normalised” and 59.7 % after LOESS. Box-Cox power transformation had similar results on distributions showing departure from normality with 57 % of distributions approximating “normal” after transformation. Applying Box-Cox transformation after Spline or Loess smoothing techniques increased that proportion to 82.4 and 82.7 % respectively.ConclusionThis suggests that statistical approaches relying on the normal distribution assumption can be successfully applied to MUAC. In light of this promising finding, further research is ongoing to evaluate the performance of a normal distribution based approach to estimating the prevalence of wasting using MUAC.

Highlights

  • Wasting is a major public health issue throughout the developing world

  • The shape of the normal distribution is quantified by two parameters: the mean and the standard deviation, and follows important properties: (1) it is always symmetrical with equal areas on both sides of the curve; (2) the highest point on the curve corresponds to the mean which equals the median and the mode; (3) the spread of the curve is determined by the standard deviation; and (4) as with all probability density functions the area under the curve must sum to the total probability of 1 [5]

  • The distribution of Mid-Upper Arm Circumference (MUAC) showed no departure from a normal distribution in 37.4 % (319 out of 852) of the MUAC distributions using the Shapiro–Wilk test

Read more

Summary

Introduction

Wasting is a major public health issue throughout the developing world. Out of the 6.9 million estimated deaths among children under five annually, over 800,000 deaths (11.6 %) are attributed to wasting. Many statistical procedures are based on the assumption that the data used are normally distributed. Many statistical procedures are based on the assumption that the data follow a normal distribution. The shape of the normal distribution (the characteristic “bell curve”) is quantified by two parameters: the mean and the standard deviation, and follows important properties: (1) it is always symmetrical with equal areas on both sides of the curve; (2) the highest point on the curve corresponds to the mean which equals the median and the mode; (3) the spread of the curve is determined by the standard deviation; and (4) as with all probability density functions the area under the curve must sum to the total probability of 1 [5]. The probit approach [5, 6] estimates the prevalence of wasting as the cumulative probability of lying below the relevant MUAC cut-point based on the mean and standard deviation (SD) of the observed data [5, 6]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call