Abstract

Data returned from the gamma‐ray spectrometer onboard the Mercury Surface, Space Environment, Geochemistry, and Ranging (MESSENGER) spacecraft have been interpreted to say that Mercury is a volatile‐rich planet (elevated K/Th and K/U), which is important given its heliocentric distance. The MESSENGER X‐ray spectrometer provided chemical information from the surface of Mercury which we used to calculate an average surface composition for the regions analyzed. The high S abundance and low FeO abundance of the surface indicates that the oxygen fugacity of the Mercurian interior is very reducing (−6.3 to −2.6 logfO2units below the iron‐wüstite buffer). At these low oxygen fugacities, elements that are typically considered lithophile can become more siderophile or chalcophile. We review available metal/silicate partitioning data for K and U to show that Mercury's volatile inventory is still an open question, and additional experiments investigating metal/silicate partitioning at the conditions of Mercury's core formation are needed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.