Abstract

A growing number of copper(II) complexes have been identified as suitable candidates for biomedical applications. Here, we show that the biocompatibility and stability of copper(II) complexes can be tuned by directed ligand design and complex geometry. We demonstrate that azamacrocycle-based chelators that envelope copper(II) in a five-coordinate, distorted trigonal-bipyramidal structure are more chemically inert to redox-mediated structural changes than their six-coordinate, Jahn-Teller-distorted counterparts, as evidenced by electrochemical, crystallographic, electron paramagnetic resonance, and density functional theory studies. We further validated our hypothesis of enhanced inertness in vitro and in vivo by employing Cu-64 radiolabeling of bifunctional analogues appended to a prostate-specific membrane antigen targeting dipeptide. The corresponding Cu-64 complexes were tested for stability in vitro and in vivo, with the five-coordinate system demonstrating the greatest metabolic stability among the studied picolinate complex series.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call