Abstract

Trade-offs are a central tenet in the life-history evolution and the simplest model to understand it is the “Y” model: the investment of one arm will affect the investment of the other arm. However, this model is by far more complex, and a “branched Y-model” is proposed: trade-offs could exist within each arm of the Y, but the mechanistic link is unknown. Here we used Tenebrio molitor to test if Juvenile Hormone (JH) could be a mechanistic link behind the “branched Y-model”. Larvae were assigned to one of the following experimental groups: (1) low, (2) medium and (3) high doses of methoprene (a Juvenile Hormone analogue, JHa), (4) acetone (methoprene diluents; control one) or (5) näive (handled in the same way as other groups; control two). The JHa lengthened the time of development from larvae to pupae and larvae to adults, resulting in adults with a larger size. Males with medium and long JHa treatment doses were favored with female choice, but had smaller testes and fewer viable sperm. There were no differences between groups in regard to the number of spermatozoa of males, or the number of ovarioles or eggs of females. This results suggest that JH: (i) is a mechanistic link of insects “branched Y model”, (ii) is a double ended-sword because it may not only provide benefits on reproduction but could also impose costs, and (iii) has a differential effect on each sex, being males more affected than females.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.