Abstract

Urine cytology offers a rapid and relatively inexpensive method to diagnose urothelial neoplasia. In our setting of a public sector laboratory in South Africa, urothelial neoplasia is rare, compromising pathology training in this specific aspect of cytology. Artificial intelligence-based synthetic image generation-specifically the use of generative adversarial networks (GANs)-offers a solution to this problem. A limited, but morphologically diverse, dataset of 1000 malignant urothelial cytology images was used to train a StyleGAN3 model to create completely novel, synthetic examples of malignant urine cytology using computer resources within reach of most pathology departments worldwide. We have presented the results of our trained GAN model, which was able to generate realistic, morphologically diverse examples of malignant urine cytology images when trained using a modest dataset. Although the trained model is capable of generating realistic images, we have also presented examples for which unrealistic and artifactual images were generated-illustrating the need for manual curation when using this technology in a training context. We have presented a proof-of-concept illustration of creating synthetic malignant urine cytology images using machine learning technology to augment cytology training when real-world examples are sparse. We have shown that despite significant morphologic diversity in terms of staining variations, slide background, variations in the diagnostic malignant cellular elements, the presence of other nondiagnostic cellular elements, and artifacts, visually acceptable and varied results are achievable using limited data and computing resources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call