Abstract

Purpose: There has been a scarcity of integrated, long-term (>4 week) studies on structural and functional alterations in the penis according to the period following cavernous nerve (CN) injury. The aim of this study was to investigate time-dependent structural and functional changes in the corpus cavernosum following CN injury in a rat model. Materials and Methods: Ninety male Sprague-Dawley rats (10 weeks old) were divided into 4 groups: normal control (C), sham (S), bilateral CN resection (R), and bilateral CN crush injury (I) groups. At 1, 4, and 12 weeks after the procedure, erectile function was assessed by electrostimulation. The terminal deoxynucleotidyl transferase-mediated 2’-deoxyuridine 5’-triphosphate nick end labeling (TUNEL) assay was performed for detection of apoptosis. Masson’s trichrome staining and immunohistochemistry were performed for detection of alpha smooth muscle actin (α-SMA). Western blot analysis was then performed. Results: The R and I groups showed persistent impairment of erectile function at all three points in time. Apoptosis peaked at 1 week after resection or crush injury and then gradually subsided. The smooth muscle cell/collagen ratio and expression of α-SMA gradually decreased over time after CN resection or crush injury. Myosin phosphatase target subunit 1 phosphorylation progressively increased over time after CN resection or crush injury. On the other hand, expression of phospho-protein kinase B, phospho-endothelial nitric oxide synthase, and neuronal nitric oxide synthase transiently decreased at 1 week after resection or crush injury and then recovered to the control values. Conclusions: Our results suggest that persistent up-regulation of the RhoA/Rho-kinase pathway and structural change such as decreased smooth muscle cell and increased cavernosal fibrosis might play an important role in persistent erectile dysfunction following CN injury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.