Abstract

The goal of this study was to determine whether principal component analysis (PCA) can be used to process GPS ionospheric total electron content (TEC) data on a monthly basis to identify early earthquake-associated TEC anomalies. PCA is applied to GPS (mean value of a month) ionospheric TEC records collected from the Japan GEONET system to detect TEC anomalies associated with 10 earthquakes in Japan (M ≥ 6.0) from 2006 to 2007. According to the results, PCA was able to discriminate clear TEC anomalies in the months when all 10 earthquakes occurred. After reviewing the months when no M ≥ 6.0 earthquake occurred but the geomagnetic storm activity was present, it is possible that the maximal principal eigenvalues PCA returned for these 10 earthquakes indicate earthquake-associated TEC anomalies. Previously, PCA has been used to discriminate earthquake-associated TEC anomalies recognized by other researchers who found that a statistical association between large earthquakes and TEC anomalies could be established in the 5 days before earthquake nucleation and in 24 h before earthquake; however, since PCA uses the characteristics of principal eigenvalues to determine earthquake-related TEC anomalies, it is possible to show that such anomalies existed earlier than this 5-day statistical window. In this paper, this is shown through the application of PCA to one-dimensional TEC data relating to the earthquake of 17 February 2007 (M = 6.0). The analysis is applied to daily TEC and reveals a large principal eigenvalue (representative of an earthquake-associated anomaly) for 02 February, 15 days before the 17 February earthquake.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call