Abstract
BackgroundOur purpose was to study the association between the intracranial atherosclerosis as measured by cavernous carotid artery calcification (ICAC) observed on head CT and atrophic changes of supra-tentorial brain demonstrated by MRI.MethodsInstitutional review board approval was obtained for this retrospective study incorporating 65 consecutive patients presenting acutely who had both head CT and MRI. Arterial calcifications of the intracranial cavernous carotids (ICAC) were assigned a number (1 to 4) in the bone window images from CT scans. These 4 groups were then combined into high (grades 3 and 4) and low calcium (grades 1 and 2) subgroups. Brain MRI was independently evaluated to identify cortical and central atrophy. Demographics and cardiovascular risk factors were evaluated in subjects with high and low ICAC. Relationship between CT demonstrated ICAC and brain atrophy patterns were evaluated both without and with adjustment for cerebral ischemic scores and cardiovascular risk factors.ResultsForty-six of the 65 (71%) patients had high ICAC on head CT. Subjects with high ICAC were older, and had higher prevalence of hypertension, diabetes, coronary artery disease (CAD), atrial fibrillation and history of previous stroke (CVA) compared to those with low ICAC. Age demonstrated strong correlation with both supratentorial atrophy patterns. There was no correlation between ICAC and cortical atrophy. There was correlation however between central atrophy and ICAC. This persisted even after adjustment for age.ConclusionAge is the most important determinant of atrophic cerebral changes. However, high ICAC demonstrated age independent association with central atrophy.
Highlights
Gradual loss of cerebral tissue in adulthood leads to atrophy in the central nervous system
Based on the univariate analysis of the CT images for grading of cavernous carotid artery calcium content, 19 of 65 (29%) patients were stratified into the low calcium subgroup and 46 (71%) patients were in the high calcium subgroup
Periventricular hyperintensity (PVH) did not correlate with high calcium scores
Summary
Gradual loss of cerebral tissue in adulthood leads to atrophy in the central nervous system. The role of cardiovascular risk factors [6] and even extra-cranial atherosclerosis [[7,8] and [9]] on cerebral atrophy has been studied, the impact of intracranial atherosclerosis on atrophy has not been as well evaluated. This has been largely due to difficulty in accurately grading the degree of atherosclerosis. Our purpose was to study the association between the intracranial atherosclerosis as measured by cavernous carotid artery calcification (ICAC) observed on head CT and atrophic changes of supra-tentorial brain demonstrated by MRI
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.