Abstract

Purpose4DCT delineated internal target volume (ITV) was applied to determine the tumor motion and used as planning target in treatment planning in lung cancer stereotactic body radiotherapy (SBRT). This work is to study the accuracy of using ITV to predict the real target dose in lung cancer SBRT.Materials and methodsBoth for phantom and patient cases, the ITV and gross tumor volumes (GTVs) were contoured on the maximum intensity projection (MIP) CT and ten CT phases, respectively. A SBRT plan was designed using ITV as the planning target on average projection (AVG) CT. This plan was copied to each CT phase and the dose distribution was recalculated. The GTV_4D dose was acquired through accumulating the GTV doses over all ten phases and regarded as the real target dose. To analyze the ITV dose error, the ITV dose was compared to the real target dose by endpoints of D99, D95, D1 (doses received by the 99%, 95% and 1% of the target volume), and dose coverage endpoint of V100(relative volume receiving at least the prescription dose).ResultsThe phantom study shows that the ITV underestimates the real target dose by 9.47%∼19.8% in D99, 4.43%∼15.99% in D95, and underestimates the dose coverage by 5% in V100. The patient cases show that the ITV underestimates the real target dose and dose coverage by 3.8%∼10.7% in D99, 4.7%∼7.2% in D95, and 3.96%∼6.59% in V100 in motion target cases.ConclusionsCautions should be taken that ITV is not accurate enough to predict the real target dose in lung cancer SBRT with large tumor motions. Restricting the target motion or reducing the target dose heterogeneity could reduce the ITV dose underestimation effect in lung SBRT.

Highlights

  • With the spiral computed tomography (CT) screening, patients diagnosed with early stage non-small cell lung cancer (NSCLC) were expected to increase significantly in decades [1]

  • The phantom study shows that the internal target volume (ITV) underestimates the real target dose by 9.47%~19.8% in D99, 4.43%~15.99% in D95, and underestimates the dose coverage by 5% in V100

  • Cautions should be taken that ITV is not accurate enough to predict the real target dose in lung cancer stereotactic body radiotherapy (SBRT) with large tumor motions

Read more

Summary

Introduction

With the spiral computed tomography (CT) screening, patients diagnosed with early stage non-small cell lung cancer (NSCLC) were expected to increase significantly in decades [1]. In order to improve the treatment outcomes, stereotactic body radiotherapy (SBRT) with altered dose-fractionation regimens has been investigated and shown promising clinical results compared to the conventional radiotherapy in early stage lung cancer treatment [3, 4]. The target contouring method that delineates gross tumor volume (GTV) over all phases and merge them into an internal GTV (IGTV) is scarcely used. A method delineating an internal target volume (ITV) that encompassing the GTV motion area on maximum intensity projection (MIP) is usually implemented [5, 6]. This ITV or ITV derived planning target volume (PTV) is used in treatment planning and dose evaluation [7]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call