Abstract

This review investigates two recent developments in artificial intelligence and neural computation: learning from imitation and the development of humanoid robots. It is postulated that the study of imitation learning offers a promising route to gain new insights into mechanisms of perceptual motor control that could ultimately lead to the creation of autonomous humanoid robots. Imitation learning focuses on three important issues: efficient motor learning, the connection between action and perception, and modular motor control in the form of movement primitives. It is reviewed here how research on representations of, and functional connections between, action and perception have contributed to our understanding of motor acts of other beings. The recent discovery that some areas in the primate brain are active during both movement perception and execution has provided a hypothetical neural basis of imitation. Computational approaches to imitation learning are also described, initially from the perspective of traditional AI and robotics, but also from the perspective of neural network models and statistical-learning research. Parallels and differences between biological and computational approaches to imitation are highlighted and an overview of current projects that actually employ imitation learning for humanoid robots is given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.