Abstract
Hyaluronic acid (HA) is a multiple-function biopolymer that is widely used in food, cosmetic, and biomedical fields. In group C streptococci, the major workhorse of HA production in industry, the HA biosynthetic pathway has been proposed, while how HA synthesis is regulated is unclear. In this study, we identified twenty-five putative transcriptional repressors in S. zooepidemicus and studied whether they regulate HA synthesis or not. The individual gene deletion strain was firstly constructed, and the phenotypic changes of the corresponding deletion strains in stress tolerance and HA production were detected. The hrcA deletion strain is more sensitive to high temperature, and the rex deletion strain is more resistant to the oxidative stress. Three transcriptional repressor deletions resulted significantly decreased transcriptional levels of hasA, among which the scrR deletion strain shows most dramatical decrease in HA production. The regulatory mechanism of how ScrR affects the production of HA was further explored by transcriptional expression analysis of scrA and scrB, two direct target genes of ScrR regulon. Our results indicates that the deficiency of ScrR results in the unbalanced expression of scrA and scrB, which might also partly account for the decreasing production of HA. In agreement with the speculation, overexpression of scrB in ΔscrR genetic background results in 80% improvement in HA production. Taken together, the systemic genetic study of transcriptional repressors expands our understanding for the physiological regulation process of S. zooepidemicus and should help in the development of high-performance industrial strains for the efficient production of HA. KEY POINTS: • Twenty-two transcriptional repressor genes in S. zooepidemicus were deleted individually, and the phenotypes of corresponding mutants on a variety of conditions were characterized. • HrcA deficiency showed inferior cell tolerance to high temperature, and Rex deficiency showed superior cell tolerance to reactive oxygen stress, and four repressors deficiency showed inferior hyaluronic acid synthesis, among which the transcriptional levels of hasA of three mutants decreased significantly. • Optimizing sucrose metabolic flux can enhance hyaluronic acid synthesis significantly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.