Abstract

[1] Within the geophysical community Horizontal Convection (HC) has been considered irrelevant or nearly so in driving large scale overturning flows, based primarily on an inference based on a century old experiment by Sandstrom (1908), and on a theoretical argument that would prevent HC to sustain a true turbulent flow, the latter deemed necessary to achieve mixing. We revisit Paparella and Young's (2002) argument with the aid of DNS of HC at Rayleigh number up to 1010. We argue that the criterion used by these authors is overly restrictive. On the contrary, geometrical statistics show that HC possesses the characteristic of turbulent flows. The surprising result is that HC can transport very large quantities of heat and sustain large amounts of diapycnal mixing with a surprisingly small amount of dissipation. Values of diapycnal mixing and dissipation in the ocean are shown to be consistent with a HC driven ocean provided the effect of wind-forcing are included.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.