Abstract

Optical coherence tomography (OCT) was used to investigate integrity and expansion of bioresorbable drug-eluting scaffolds (BVS) after high-pressure postdilation (HPPD). Because of concerns about the risk of BVS damage, postdilation was not recommended and applied in the existing randomized studies and most registries. Recent real world data suggest incomplete BVS expansion cause higher rates of thrombosis. In vivo confirmation of the safety of high pressure postdilation is of paramount importance. Data from final OCT examination of consecutive implanted BVS, postdilated with noncompliant (NC) balloons at pressure ≥24 atm were analyzed. The following stent performance indices were assessed with OCT: mean and minimal lumen and scaffold area, residual area stenosis (RAS), incomplete strut apposition (ISA), tissue prolapse, eccentricity index (EI), symmetry index (SI), strut fractures, and edge dissections. Twenty-two BVS postdilated at high pressure were analyzed. The average maximal postdilation balloon inflation (maxPD) was 28 ± 3 atm. High pressure OPN NC Balloon (SIS Medical AG, Winterthur Switzerland) was used in 41% of postdilations with a maximal PD of 30 ± 4.7 atm. Final mean and minimal lumen area were 6.8 ± 1.4 and 5.5 ± 1.4 mm(2) , respectively. OCT showed low percentage of RAS (16 ± 9.6%), and low percentage of ISA (1.8 ± 2.4%). Mean EI was 0.86 ± 0.02 and SI 0.35 ± 0.14. OCT analysis showed one edge dissection and no scaffold fractures. BVS deployment optimization using HPPD does not cause BVS disruption and is associated with a good BVS expansion, low rate of strut malapposition and edge dissections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call