Abstract

When subjected, directly (through nutritional deficiencies) or indirectly (through alkaline constraints leading to such deficiencies) to nutrient deficiencies, certain plants respond by developing special root structures called cluster roots. This phenomenon can be considered as an ecophysiological response to a specific nutrient deficiency enabling plants to enhance nutrient uptake. Experiments conducted on an alkaline and an acid soil showed that Casuarina glauca (Sieber ex Spreng.) produced cluster roots only in the alkaline soil and not in the acid soil. In addition, iron (Fe) and phosphorus (P) deficiencies were examined separately or together to determine their effect on cluster root formation in C. glauca seedlings grown hydroponically. Results from experiments carried out on three Casuarina species (C. glauca, C. cunninghamiana Miq. and C. equisetifolia L.) indicated that Fe is involved in cluster root formation. In nutrient media lacking P but containing Fe, no cluster roots formed while seedlings receiving P and lacking Fe developed cluster roots. When incubated on chrome-azurol S-agar on blue plates (CAS assay), a technique used routinely to detect the production of siderophores by micro-organisms, the root system of Fe-deficient plants exhibited orange halos around cluster roots, indicating production of a ferric-chelating agent. It is concluded that the capacity of cluster roots of C. glauca to chelate Fe allows the plant to grow normally on alkaline soils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.