Abstract
Taste is the chemical sense responsible for the detection of non-volatile chemicals in potential foods. For fat to be considered as one of the taste primaries in humans, certain criteria must be met including class of affective stimuli, receptors specific for the class of stimuli on taste bud cells (TBC), afferent fibres from TBC to taste-processing regions of the brain, perception independent of other taste qualities and downstream physiological effects. The breakdown products of the macronutrients carbohydrates (sugars) and proteins (amino acids) are responsible for the activation of sweet and umami tastes, respectively. Following the same logic, the breakdown products of fat being fatty acids are the likely class of stimuli for fat taste. Indeed, psychophysical studies have confirmed that fatty acids of varying chain length and saturation are orally detectable by humans. The most likely fatty acid receptor candidates located on TBC are CD36 and G protein-coupled receptor 120. Once the receptors are activated by fatty acids, a series of transduction events occurs causing the release of neurotransmitters towards afferent fibres signalling the brain. Whether fatty acids elicit any direct perception independent of other taste qualities is still open to debate with only poorly defined perceptions for fatty acids reported. Others suggest that the fatty acid taste component is at detection threshold only and any perceptions are associated with either aroma or chemesthesis. It has also been established that oral exposure to fat via sham feeding stimulates increases in blood TAG concentrations in humans. Therefore, overall, with the exception of an independent perception, there is consistent emerging evidence that fat is the sixth taste primary. The implications of fatty acid taste go further into health and obesity research, with the gustatory detection of fats and their contributions to energy and fat intake receiving increasing attention. There appears to be a coordinated bodily response to fatty acids throughout the alimentary canal; those who are insensitive orally are also insensitive in the gastrointestinal tract and overconsume fatty food and energy. The likely mechanism linking fatty acid taste insensitivity with overweight and obesity is development of satiety after consumption of fatty foods.
Highlights
Taste is the chemical sense responsible for the detection of non-volatile chemicals in potential foods
It is perhaps appropriate to classify taste as a nutrienttoxin detection system, with the qualities informing us via an associated hedonic response of suitability to swallow or reject, for example sweet elicited by sugars reflecting carbohydrate, sour elicited by free hydrogen ions (H+) reflecting excessive acid, umami elicited by glutamate and other amino acids reflecting protein content, salt elicited by sodium (Na+) and other ions reflecting mineral content, and bitter reflecting potential toxins in foods
Fat taste Fat taste is an area of increasing interest in chemosensory and nutrition research with the possibility that it may be linked with dietary consumption of fatty foods
Summary
3. Chale-Rush A, Burgess JR, Mattes RD: Evidence for human orosensory (taste?) sensitivity to free fatty acids. 7. De Araujo IE, Rolls ET: Representation in the human brain of food texture and oral fat. 8. Galindo MM, Voigt N, Stein J, van Lengerich J, Raguse JD, Hofmann T, Meyerhof W, Behrens M: G protein-coupled receptors in human fat taste perception. 9. Stewart JE, Feinle-Bisset C, Golding M, Delahunty C, Clifton PM, Keast RS: Oral sensitivity to fatty acids, food consumption and BMI in human subjects. Pepino MY, Love-Gregory L, Klein S, Abumrad NA: The fatty acid translocase gene CD36 and lingual lipase influence oral sensitivity to fat in obese subjects. Matsumura S, Mizushige T, Yoneda T, Iwanaga T, Tsuzuki S, Inoue K, Fushiki T: GPR expression in the rat taste bud relating to fatty acid sensing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.