Abstract

Humans can obtain pre-formed long-chain PUFA from the diet and are also able to convert essential fatty acids (EFA) to longer-chain PUFA. The metabolic pathway responsible for EFA interconversion involves alternating desaturation and carbon chain elongation reactions, and carbon chain shortening by peroxisomal β-oxidation. Studies using stable isotope tracers or diets supplemented with EFA show that capacity for PUFA synthesis is limited in humans, such that DHA (22 : 6n-3) synthesis in men is negligible. PUFA synthesis is higher in women of reproductive age compared with men. However, the magnitude of the contribution of hepatic PUFA synthesis to whole-body PUFA status remains unclear. A number of extra-hepatic tissues have been shown to synthesise PUFA or to express genes for enzymes involved in this pathway. The precise function of extra-hepatic PUFA synthesis is largely unknown, although in T lymphocytes PUFA synthesis is involved in the regulation of cell activation and proliferation. Local PUFA synthesis may also be important for spermatogenesis and fertility. One possible role of extra-hepatic PUFA synthesis is that it may provide PUFA in a timely manner to facilitate specific cell functions. If so, this may suggest novel insights into the effect of dietary PUFA and/or polymorphisms in genes involved in PUFA synthesis on health and tissue function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call