Abstract

Introduction: As oogenesis is a continuum of months, oocyte quality will be dictated by events that occur during both the growth and maturation stages of development. Morphological variation of the oocyte and embryo result from intrinsic factors such as age and genetic defects or extrinsic factors such as stimulation protocol, culture condition, and nutrition. Controlled ovarian stimulation (COH) interferes with the balance of forces within the ovary and overrides their endogenous pattern of control to optimize normal selection process. Aim: 1. To compare the embryogenesis and outcome of assisted reproductive technology (ART) in polycystic ovary syndrome (PCOS) and non-PCOS women. 2. To determine whether embryo quality, implantation rate (IR) and clinical pregnancy rate (CPR) are related to estradiol (E2) or progesterone (P4) levels on the day of human chorionic gonadotropin (hCG). Materials and Methods: This was a retrospective case–control study of 425 women at a Tertiary Care Center from January 2017 to December 2018. Of these 183 were PCOS and 242 non-PCOS matched for body mass index and age. We compared the follicle stimulating hormone, antral follicle count (AFC), anti-Mullerian hormone, thyroid-stimulating hormone, total gonadotropin utilized, total days of stimulation, estradiol (E2), and progesterone (P4) on the day of hCG trigger between both groups. Before entering the in vitro fertilization program, patients were classified into PCOS and non-PCOS depending on the AFC at the baseline scan done on day 2/3 of the menstrual cycle. We calculated the fertilization, cleavage, blastocyst formation rate, and utilization rate of the embryos from the total oocytes retrieved and fertilized in four different groups classified according to the E2 levels on the day of the hCG (≤1000, 1001–2000, 2001–3000, >3000 pg/ml) in both PCOS and non-PCOS women. We also looked at the IR and CPR in the above four groups in fresh cycle and included the frozen embryo transfer cycles to calculate the utilization rate. Statistical comparison was done using the Mann–Whitney U test. Results: There was no statistically significant difference in the fertilization rate (P = 0.803), cleavage rate was higher in PCOS group (P = 0.001) and blastocyst formation rate was higher in non-PCOS group (P 3000 pg/ml. The IR was higher in the PCOS group as compared to non-PCOS in women with E2 between 2000 and 3000 (P = 0.020). No difference in the CPR across the E2 groups. The utilization rate of the embryos per egg retrieved and per 2PN was statistically higher in patients with an E2 Conclusion: As embryogenesis and endometrial receptivity can be affected by high E2 and P4 levels it is highly recommended to closely monitor COS cycles by measuring serum E2 and P4 levels on D2 and at the time of hCG trigger. The dose of gonadotropins dose should be chosen in such a way that the number of oocytes retrieved should not be more than 10 to 12. When E2 and P4 are elevated over a threshold value, one should cryopreserve the embryo and transfer them in the subsequent cycle to decrease the incidence of ovarian hyperstimulation syndrome and improve the IR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call