Abstract

It has long been thought that gene expression is tightly regulated in multicellular eukaryotes, so that expression profiles match functional profiles. This conception emerged from the assumption that gene activity is synonymous with gene function. This paradigm was first challenged by comparative protein electrophoresis studies showing extensive differences in expression patterns among related species. The paradigm is now being challenged by evolutionary transcriptomics using microarray technologies. Most gene expression profiles display features that lack any obvious functional significance. The so-called "ectopic" expression refers to the expression of genes at times and locations where the target gene is not known to have a function. However, ectopic expression might be associated with genuine function even if this function is not essential or has yet to be ascertained. Alternatively, ectopic expression might come about as a superfluous by-product of regulatory systems, which would call for a revision of prevailing ideas about the specificity of gene regulation. We herein review available evidence for ectopic expression and the hypotheses proposed for its origin and evolution. We propose that ectopic expression must be regarded as part of an integrated phenotypic whole. It seems likely that ectopic expression represents a leak in the evolution of regulatory systems, but one that is endowed with considerable evolutionary possibilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call