Abstract

Ionizing radiation can induce a large variety of damages in the DNA. The processing or repair of this damage occurs in the first minutes up to several hours after irradiation. Afterwhile the remaining lesions are fixed in an irreparable state. However, in recent years, data have accumulated to suggest that genomic instability can manifest in the progeny of irradiated cells leading to accumulation of damage through cell generations. Different biological endpoints were described: delayed cell death, delayed mutations, de novo chromosomal instability. The question regarding the ability of sparsely ionizing X-or γ-rays to induce such phenomenon is still unclear for normal cells. In most of the reports, high linear energy transfer (LET) particles are able to induce genomic instability but not low-LET particles. The mechanisms underlying this phenomenon are still unknown. In human fibroblasts irradiated by heavy ions in a large range of LETs, we showed that the chromosomal instability is characterized by telomeric associations (TAS) involving specific chromosomes. The same instability is observed during the senescence process and during the first passages after viral transfection. The specific chromosomal instability that we observed after irradiation would not be a direct consequence of irradiation but would be a natural phenomenon occurring after many cell divisions. The effect of the irradiation would lie on the bypass of the senescence process that would permit cells with end to end fusions to survive and be transmitted through cell generations, accumulating chromosome rearrangements and chromosome imbalances. Research on molecular mechanisms of chromosomal instability is focused on the role of telomeres in end to end fusions. Such observations could contribute to understand why chromosomal instability is not a dose dependant phenomenon.Why high-LET particles would be so potent in inducing delayed instability? The answer might lie in the study of primary effects of ionizing radiations (X-rays, γ-rays and heavy ions). Cell survival studies showed that K-shell ionizations could be the primary physical events responsible of cell death. The quality of the DNA damages and gene mutations high-LET induced could be the keyhole leading to the great efficiency of these particles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.