Abstract
Background Knowledge about cutaneous microbiota in psoriasis vulgaris and seborrheic dermatitis is limited, and a comparison of microbiota in the two diseases was not yet previously undertaken. Aims/Objectives This study aimed to compare the scalp lesional and non-lesional microbiota in psoriasis vulgaris and seborrheic dermatitis with that in a healthy control group. Methods Fifty samples were taken with sterile swabs from patients' and controls' scalps, and 16S rRNA gene sequencing analyses were performed. Results Alpha and beta diversity analyses showed that bacterial load and diversity were significantly increased in psoriasis vulgaris and seborrheic dermatitis lesions compared to the controls. As phyla, Actinobacteria decreased and Firmicutes increased, while as genera, Propionibacterium decreased; Staphylococcus, Streptococcus, Aquabacterium, Neisseria and Azospirillum increased in lesions of both diseases. Specifically, Mycobacterium, Finegoldia, Haemophilus and Ezakiella increased in psoriasis vulgaris and Enhydrobacter, Micromonospora and Leptotrichia increased in seborrheic dermatitis lesions. Mycobacterium, Ezakiella and Peptoniphilus density were higher in psoriasis vulgaris compared to seborrheic dermatitis lesions. The bacterial diversity and load values of non-lesional scalp in psoriasis vulgaris and seborrheic dermatitis lay between those of lesional areas and controls. Limitations The small sample size is the main limitation of this study. Conclusion Higher bacterial diversity was detected in lesions of both psoriasis and seborrheic dermatitis compared to the controls, but similar alterations were observed when the two diseases were compared. Although these differences could be a result rather than a cause of the two diseases, there is a need to analyze all members of the microbiota and microbiota-host interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Indian journal of dermatology, venereology and leprology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.