Abstract

Whether Cr(III) in Cr(III)-containing sites formed after Cr(VI) reduction and stabilization remediation are re-oxidized and pose toxicity risks again has been a growing concern. In this study, 1030 data were collected to perform a meta-analysis to clarify the effects of various factors (oxidant type, soil and Cr(III) solid compound properties, aging conditions, and testing methods) on Cr(III) oxidation. We observed that the soil properties of clay, pH ≥ 8, the lower CEC capacity, easily reducible Mn content, and Cr(III) content, and the higher Eh value and Fe content can promote the re-oxidation of Cr(III). Publication bias and sensitivity analyses confirmed the stability and reliability of the meta-analysis. Subsequently, we used five machine learning algorithms to construct and optimize the models. The prediction results of the RF model (RMSE <1.36, R2 >0.71) with good algorithm performance showed that after ten years of remediation, the extractable Cr(VI) concentration in the soil was 0.0087 mg/L, indicating a negligible secondary pollution risk of Cr(III) re-oxidation. This study provides theoretical support for subsequent risk management and control after Cr(VI) soil remediation and provides a solution for the quantitative prediction of Cr(III) re-oxidation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call