Abstract

This paper proposes strategies to detect time reversibility in stationary stochastic processes by using the properties of mixed causal and noncausal models. It shows that they can also be used for non-stationary processes when the trend component is computed with the Hodrick–Prescott filter rendering a time-reversible closed-form solution. This paper also links the concept of an environmental tipping point to the statistical property of time irreversibility and assesses fourteen climate indicators. We find evidence of time irreversibility in greenhouse gas emissions, global temperature, global sea levels, sea ice area, and some natural oscillation indices. While not conclusive, our findings urge the implementation of correction policies to avoid the worst consequences of climate change and not miss the opportunity window, which might still be available, despite closing quickly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.