Abstract

The extent of catchment impervious surface is recognised to be an important factor associated with the condition of urban freshwater streams. We tested the hypothesis that the degree of catchment imperviousness predicted the relative ecological condition of freshwater reaches within the network of streams and rivers in the partly urbanised Georges River catchment in temperate south-eastern Australia. The 2-year study involved two spring and two autumn assessments of water quality (chemical and physical) and ecological condition, using benthic macroinvertebrates, riparian vegetation and calculation of catchment imperviousness. The study revealed that highly urbanised streams had strongly degraded water quality and macroinvertebrate communities, compared to clean non-urban reference streams. We found three clear groups of sites with varying degrees of ecological condition, being categorised according to the level of catchment effective imperviousness (low 18.0 %). Water pollution also varied according to these categories. A combination of two water chemistry attributes (total nitrogen and calcium), along with catchment imperviousness and riparian vegetation condition, were identified as being the factors most strongly associated with variation of macroinvertebrate communities. Based on our results, we recommend that protection of the ecological condition of streams should focus on not only water quality but also include catchment imperviousness and riparian vegetation condition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.