Abstract
During mammalian pregnancy and lactation, the maternal demand for calcium is increased to satisfy fetus and newborn skeletal growth. In addition to the dietary intake, females use the calcium contained in their bones to supply this increased demand, leading to a decrease in maternal bone mineral content. In reproductive insectivorous female bats, bone loss has been described as a physiological cost of reproduction, due to the reported increased risk of bone fracture. This physiological cost may be the mechanism underlying the conflict between increasing litter size and maintaining wing skeletal integrity, which would help to explain the small litter size of most bat species. If bone loss is a linking cost between reproduction and survival in bats, and most bat species have small litter sizes, one would expect to find a loss of bone and an increasing probability of bone fracture during pregnancy and lactation in other non-insectivorous bats. In this study, we tested for the existence of this cost in the Great-fruit eating bat, Artibeus lituratus. We analyzed trabecular structure, bone strength and bone mineral content for the humerus bone, hypothesizing that bone loss during reproduction in females would increase the risk of fracture. Our results showed a decrease of 22–31% in bone trabecular area in lactating females, rapidly compensated following weaning. Bone strength did not differ among reproductive and non-reproductive groups and seems to be more influenced by bone organic components rather than mineral contents. Since we observed bone loss during reproduction yet the humerus strength seems to be unaffected, we suggest that bone loss may not represent a physiological cost during reproduction for this frugivorous bat.
Highlights
Size at birth, age at maturity or growth patterns are life-history traits that contribute to the strategy of an organism to successfully achieve survival and reproduction [1]
We investigated whether patterns of bone loss in a frugivorous bat species is similar to that of insectivorous bats, and whether pregnancy and lactation result in decreased bone mineral content and biomechanical performance
Bone loss was confirmed by decreased trabecular area in the epiphysis of the humerus
Summary
Age at maturity or growth patterns are life-history traits that contribute to the strategy of an organism to successfully achieve survival and reproduction [1]. It has been proven that these traits cannot be selected simultaneously to increase fitness’ components. Bone loss a cost of reproduction in Artibeus lituratus study design, data collection and analysis, decision to publish, or preparation of the manuscript
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.